Mesoscale Computer Simulations of Polymer-tethered Organic/inorganic Nanocube Self-assembly
نویسندگان
چکیده
A molecular simulation study of the mesoscale self-assembly of tethered nanoparticles having a cubic geometry is presented. Minimal models of the tethered nanocubes are developed to represent a polyhedral oligomeric silsesquioxane (POSS) molecule with polymeric substituents. The models incorporate some of the essential structural features and interaction specificity of POSS molecules, and facilitate access to the long length and timescales pertinent to the assembly process while foregoing atomistic detail. The types of self-assembled nanostructures formed by the tethered nanocubes in solution are explored via Brownian dynamics simulations using these minimal models. The influence of various parameters, including the conditions of the surrounding medium, the molecular weight and chemical composition of the tether functionalities, and the number of tethers on the nanocube, on the formation of specific structures is demonstrated. The role of cubic nanoparticle geometry on self-assembly is also assessed by comparing the types of structures formed by tethered nanocubes and by their flexible coil triblock copolymer and tethered nanosphere counterparts. Morphological phase diagrams are proposed to describe the behavior of the tethered nanocubes.
منابع مشابه
Simulations of Organic-tethered Silsesquioxane Nanocube Assemblies
Polyhedral oligomeric silsesquioxane (POSS) based materials are a class of organic/inorganic hybrid nanomaterials with many interesting properties. Recent experiments have demonstrated that self-assembly of tethered POSS nanocubes is a promising route to the synthesis of novel materials with highly ordered, complex nanostructures. Using a coarsegrained model developed for tethered POSS, we perf...
متن کاملComputer simulations of block copolymer tethered nanoparticle self-assembly.
We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar ...
متن کاملSimulation study of cyclic-tethered nanocube self-assemblies: effect of tethered nanocube architectures
Self-assembly of functionalized nano building blocks (NBBs) is a promising avenue for ‘bottom-up’ nanomaterials design. Experimental studies on functionalized polyhedral oligomeric silsesquioxane (POSS) nanocubes have revealed a wide variety of nanostructures from their assemblies. Our previous simulation studies have reproduced some of these nanostructures and predicted unusual phase behaviour...
متن کاملSelf-organization of nanoscopic building blocks into ordered assemblies
We studied the self-assembly of nanoscopic building blocks comprised of polymer-tethered nanoparticles using computer simulation and predict that these building blocks can assemble into monoand multi-layer sheets and shells. The simulations further demonstrate that for some nanoparticle geometries and tethered nanoparticle topologies, ideas from block copolymers, surfactants and liquid crystals...
متن کاملDetailed Mesoscale Dynamic Simulation of Block Copolymer Directed Self-Assembly Processes: Application of Protracted Colored Noise Dynamics
Directed self-assembly (DSA) of block copolymers is a promising technique for producing sub-30 nm pitch regular patterns, and the development of these DSA techniques could benefit greatly from computer simulation of such methods. Current simulation methods such as mean field approaches suffer from a number of limitations that affect their accuracy and their level of detail. In this work a simul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009